RiaSTAP, Fibrinogen Concentrate (Human)
Lyophilized Powder for Solution for Intravenous Injection

Initial U.S. Approval: 2009

INDICATIONS AND USAGE

RiaSTAP, Fibrinogen Concentrate (Human) is a human blood coagulation factor indicated for the treatment of acute bleeding episodes in patients with congenital fibrinogen deficiency, including afibrinogenemia and hypofibrinogenemia (1).

DOSAGE AND ADMINISTRATION

For intravenous use only.

- **Dose (mg/kg body weight) =**
 \[\text{Target level (mg/dL)} - \text{measured level (mg/dL)}\]/1.7 (mg/dL per mg/kg body weight)

- **Dose when fibrinogen level is unknown: 70 mg/kg body weight** (2.1).

- Monitoring of patient's fibrinogen level is recommended during treatment. A target fibrinogen level of 100 mg/dL should be maintained until hemostasis is obtained (2.1).

- **Injection rate should not exceed 5 mL per minute** (2.3).

DOSAGE FORMS AND STRENGTHS

- RiaSTAP is available as a single-use vial containing 900 mg to 1300 mg lyophilized fibrinogen concentrate powder for reconstitution (3).

- The actual fibrinogen potency for each lot is printed on the vial label and carton (3).

CONTRAINDICATIONS

- Known anaphylactic or severe systemic reactions to human plasma-derived products (4).

WARNINGS AND PRECAUTIONS

- Monitor patients for early signs of anaphylaxis or hypersensitivity reactions and if necessary, discontinue administration and institute appropriate treatment (5.1).

- Thrombotic events have been reported in patients receiving RiaSTAP. Weigh the benefits of administration versus the risks of thrombosis (5.2).

- Because RiaSTAP is made from human blood, it may carry a risk of transmitting infectious agents, e.g., viruses, the variant Creutzfeldt-Jakob disease (vCJD) agent and, theoretically, the Creutzfeldt-Jakob disease (CJD) agent (5.3).

ADVERSE REACTIONS

- The most serious adverse reactions observed are thrombotic episodes (pulmonary embolism, myocardial infarction, deep vein thrombosis) and anaphylactic reactions (6).

- The most common adverse reactions observed in clinical studies (frequency >1%) were fever and headache (6.1).

To report SUSPECTED ADVERSE REACTIONS, contact CSL Behring at 1-866-915-6958 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

USE IN SPECIFIC POPULATIONS

- Pediatric: Shorter half life and faster clearance than in adults has been observed (8.4).

See 17 for PATIENT COUNSELING INFORMATION.

Revised: April 2019

FULL PRESCRIBING INFORMATION: CONTENTS

1 INDICATIONS AND USAGE
2 DOSAGE AND ADMINISTRATION
 2.1 Treatment of Congenital Fibrinogen Deficiency
 2.2 Preparation and Reconstitution
 2.3 Administration
3 DOSAGE FORMS AND STRENGTHS
4 CONTRAINDICATIONS
5 WARNINGS AND PRECAUTIONS
 5.1 Hypersensitivity Reactions
 5.2 Thrombosis
 5.3 Transmissible Infectious Agents
6 ADVERSE REACTIONS
 6.1 Clinical Trials Experience
 6.2 Postmarketing Experience
8 USE IN SPECIFIC POPULATIONS
 8.1 Pregnancy
 8.2 Lactation
 8.4 Pediatric Use
 8.5 Geriatric Use
11 DESCRIPTION
12 CLINICAL PHARMACOLOGY
 12.1 Mechanism of Action
 12.2 Pharmacodynamic Action
 12.3 Pharmacokinetics
14 CLINICAL STUDIES
15 REFERENCES
16 HOW SUPPLIED/STORAGE AND HANDLING
17 PATIENT COUNSELING INFORMATION

*Sections or subsections omitted from the full prescribing information are not listed.
RiaSTAP®
Fibrinogen Concentrate (Human)
Lyophilized Powder for Solution for Intravenous Injection

FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE
RiaSTAP®, Fibrinogen Concentrate (Human) is a human blood coagulation factor indicated for the treatment of acute bleeding episodes in patients with congenital fibrinogen deficiency, including afibrinogenemia and hypofibrinogenemia.

2 DOSAGE AND ADMINISTRATION
For intravenous use only.

2.1 Treatment of Congenital Fibrinogen Deficiency
RiaSTAP dosing, duration of dosing and frequency of administration should be individualized based on the extent of bleeding, laboratory values, and the clinical condition of the patient. RiaSTAP dose when baseline fibrinogen level is known
Dose should be individually calculated for each patient based on the target plasma fibrinogen level based on the type of bleeding, actual measured plasma fibrinogen level and body weight, using the following formula (see Clinical Pharmacology [12.3]):

\[
\text{Dose (mg/kg) = \frac{(Target level - Measured level) \times Body weight}{2 \times 40}}
\]

If the patient’s fibrinogen level is not known, the recommended dose is 70 mg per kg of body weight administered intravenously.

2.2 Preparation and Reconstitution
The procedures below are provided as general guidelines for preparation and reconstitution of RiaSTAP.
Use aseptic technique when preparing and reconstituting RiaSTAP.
Reconstitute RiaSTAP at room temperature as follows:
1. Remove the cap from the product vial to expose the central portion of the rubber stopper.
2. Clean the surface of the rubber stopper with an antiseptic solution and allow it to dry.
3. Using an appropriate transfer device or syringe, transfer 50 mL of Sterile Water for Injection into the product vial.
4. Gently swirl the product vial to ensure the product is fully dissolved. Do not shake the vial.

After reconstitution, the RiaSTAP solution should be colorless and clear to slightly opalescent. Inspect visually for particulate matter and discoloration prior to administration. Do not use if the solution is cloudy or contains particulates. Discard partially used vials. RiaSTAP is stable for 8 hours after reconstitution when stored at 20-25°C; administer within this time period.

2.3 Administration
Do not mix RiaSTAP with other medicinal products or intravenous solutions. Administer through a separate injection site.
Use aseptic technique when administering RiaSTAP.
Administer RiaSTAP at room temperature by slow intravenous injection at a rate not exceeding 5 mL per minute.

3 DOSAGE FORMS AND STRENGTHS
RiaSTAP is available as a single-use vial containing 900 mg to 1300 mg lyophilized fibrinogen concentrate powder for reconstitution with 50 mL of Sterile Water for Injection. The actual fibrinogen potency for each lot is printed on the vial label and carton.

4 CONTRAINDICATIONS
RiaSTAP is contraindicated in patients with known anaphylactic or severe systemic reactions to human plasma-derived products (see Description [11]).

5 WARNINGS AND PRECAUTIONS
5.1 Hypersensitivity Reactions
Allergic reactions may occur. If signs or symptoms of anaphylaxis or hypersensitivity reactions (including hives, generalized urticaria, tightness of the chest, wheezing, hypotension) occur, immediately discontinue administration (see Patient Counseling Information [17]).

5.2 Thrombosis
Thrombosis may occur spontaneously in patients with congenital fibrinogen deficiency with or without the use of fibrinogen replacement therapy.1 Thromboembolic events have been reported in patients treated with RiaSTAP. Weigh the benefits of RiaSTAP administration versus the risk of thrombosis. Monitor patients receiving RiaSTAP for signs and symptoms of thrombosis. (see Patient Counseling Information [17]).

5.3 Transmissible Infectious Agents
Because RiaSTAP is made from human blood, it may carry a risk of transmitting infectious agents, e.g., viruses, the variant Creutzfeldt-Jakob disease (vCJD) agent and, theoretically, the Creutzfeldt-Jakob disease (CJD) agent. The risk that such products will transmit an infectious agent has been reduced by screening plasma donors for prior exposure to certain viruses, by testing for the presence of certain current virus infections, and by a process demonstrated to inactivate and/or remove certain viruses during manufacturing. (see Description [11]). Despite these measures, such products may still potentially transmit disease. There is also the possibility that unknown infectious agents may be present in such products (see Patient Counseling Information [17]). All infections thought by a physician possibly to have been transmitted by this product should be reported by the physician or other healthcare provider to CSL Behring Pharmacovigilance at 1-866-915-6958.

6 ADVERSE REACTIONS
The most serious adverse reactions reported in clinical studies or through postmarketing surveillance following RiaSTAP treatment are thromboembolic episodes, including myocardial infarction, pulmonary embolism, deep vein thrombosis, arterial thrombosis, and allergic-anaphylactic reactions.

The most common adverse reactions observed in more than one subject in clinical studies (frequency >1%) were fever and headache.

6.1 Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed cannot be directly compared to rates in other clinical trials and may not reflect the rates observed in practice.

6.2 Postmarketing Experience
Because postmarketing reporting of adverse reactions is voluntary and from a population of uncertain size, it is not always possible to reliably estimate the frequency of these reactions or establish a causal relationship to product exposure.

The following adverse reactions, identified by system organ class, have shown a possible causal relationship with RiaSTAP:
- Allergic-anaphylactic reactions: anaphylaxis, dyspnea, rash
- Cardiovascular: thromboembolic complications such as myocardial infarction, pulmonary embolism, and deep vein thrombosis (see Warnings and Precautions [5.2]).

General/Body as a Whole: chills, nausea, vomiting

8 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy
Risk Summary
There are no studies of RiaSTAP use in pregnant women. Animal reproduction studies have not been conducted with RiaSTAP. It is not known whether RiaSTAP can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. RiaSTAP should be used during pregnancy only if clearly needed. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

8.2 Lactation
Risk Summary
There is no information regarding the presence of RiaSTAP in human milk, its effects on the breastfed infant, or its effects on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for RiaSTAP and any potential adverse effects on the breastfed infant from RiaSTAP or from the underlying maternal condition.

8.4 Pediatric Use
RiaSTAP studies have included subjects below the age of 16 years. In the pharmacokinetic study (see Clinical Pharmacology [12.3]), 2 children aged 8 and 11 years and 3 adolescents aged 12, 14 and 16 years were studied. Subjects <16 years of age (n = 4) had shorter half-life (69.9 ± 8.5 h) and faster clearance (0.7 ± 0.1 mg/L) compared with adults (half-life: 82.3 ± 20.0 h, clearance: 0.53 ± 0.1 mg/L). The number of subjects <16 years of age in this study limits statistical interpretation.

8.5 Geriatric Use
The safety and efficacy of RiaSTAP in the geriatric population has not been studied. There were an insufficient number of subjects in this age group to determine whether they respond differently from younger subjects.

11 DESCRIPTION
RiaSTAP is a sterile, heat-treated, lyophilized fibrinogen (coagulation factor I) concentrate powder manufactured from pooled human plasma.
Fibrinogen (factor I) is a soluble plasma glycoprotein with a molecular weight of about 340 kDa. The native molecule is a dimer and consists of three pairs of polypeptide chains (Aα, Bβ, and γ). Fibrinogen is a physiological substrate of three enzymes: thrombin, factor X, and plasmin.
Each vial contains 900 to 1300 mg fibrinogen, 400 to 700 mg human albumin, 375 to 660 mg L-arginine hydrochloride, 200 to 350 mg sodium chloride and 50 to 100 mg sodium citrate. Sodium hydroxide and hydrochloric acid may have been used to adjust the pH. The pH of the reconstituted RiaSTAP is in a range of 6.5 to 7.5.

Viral Clearance
All plasma used in the manufacture of RiaSTAP is tested using serological assays for hepatitis B surface antigen and for antibodies to Human Immunodeficiency Virus (HIV)-1/2 and Hepatitis C Virus (HCV). As an additional safety measure, the plasma is tested with Nucleic Acid Testing (NAT) for Hepatitis B Virus (HBV), HCV and HIV-1 and found to be non-reactive (negative). The plasma is also screened for Hepatitis A Virus (HAV) and Human Parvovirus B19 (B19V) by NAT. Only plasma that passed virus screening is used for production, and the limit for B19V in the fractionation pool is set not to exceed 10 copies/mL.
RiaSTAP is manufactured from cryoprecipitate into a glycine precipitate, which is then further purified by multiple precipitation/adsorption steps. The manufacturing process has been demonstrated to reduce the risk of virus transmission in an additive manner: cryoprecipitation, heat treatment (>60°C for 20 hours in an aqueous solution), two subsequent glycine precipitation steps (initial and main glycine precipitation steps), and lyophilization. These steps have been validated independently in a series of in vitro experiments for their capacity to inactivate and/or remove both enveloped and non-enveloped viruses. The results of virus clearance validation studies for RiaSTAP manufacturing process are summarized in Table 1.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

During the coagulation process, thrombin cleaves the Aα and Bβ chains releasing fibrinopeptides A and B (FPA and FPB, respectively). FPA is separated rapidly and the resulting fibrin is stabilized in the presence of calcium ions and by fibrinogen concentrate therapy in fibrinogen deficiency. Blood samples were collected to determine fibrinogen activity at baseline and up to 14 days after infusion. The pharmacokinetic parameters of RiaSTAP are summarized in Table 2. No statistically relevant difference in fibrinogen activity was observed between males and females. No changes in age of 16 years of age (n=4) had shorter half-life (69.9 ± 8.5 h) and faster clearance (0.7 ± 0.14 mg/mL) compared with subjects ≥16 years of age (half-life of 82.5 ± 20.0 h and clearance of 0.53 ± 0.17 mg/mL). The number of subjects ≥16 years of age in this study limits statistical interpretation.

The incremental in vivo recovery (IVR) was determined from levels obtained up to 4 hours post-infusion. The median incremental IVR was 1.7 mg/dL (range 1.30 ± 2.73 mg/dL) increase per mg/kg. The median in vivo recovery indicates that a dose of 70 mg/kg RiaSTAP will increase fibrinogen plasma concentration in patients by approximately 120 mg/dL.

The pharmacokinetic analysis using fibrinogen antigen data (ELISA) was concordant with the fibrinogen activity (Clauss assay).

14 CLINICAL STUDIES

The efficacy of RiaSTAP is based on maximum clot firmness, a measure of clot structural integrity that reflects the underlying effectiveness of the fibrinogen present to form a fibrin clot. A pharmacokinetic study evaluated single-dose PK (see Clinical Pharmacology [12.3]) and maximum clot firmness (MCF) in subjects with afibrinogenemia. MCF was determined by thromboelastometry (ROTEM) testing and was used to demonstrate functional activity of replacement fibrinogen. Clot firmness is a functional parameter that depends on activation of coagulation, fibrinogen content of the sample and polymerization/linking of the fibrin network. Thromboelastometry has been shown to be a functional marker for assessment of fibrinogen content and for effects of fibrinogen supplementation on clinical efficacy.

For each subject, MCF was determined before (baseline) and one hour after single dose administration of RiaSTAP. RiaSTAP was found to be effective in increasing clot firmness in subjects with congenital fibrinogen deficiency (afibrinogenemia) as measured by thromboelastometry. The study results demonstrated that MCF values were significantly higher after administration of RiaSTAP than at baseline (see Table 3). Mean change from pre-infusion to 1 hour post-infusion was 8.9 mm in the primary analysis (9.9 mm for subjects <16 years old and 8.5 mm for subjects ≥16 to <65 years old). Mean change in MCF values closely approximated levels expected from adding known amounts of fibrinogen to plasma in vitro.